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BACKGROUND
• NIST has been working with RFMD & IBM in 

“Kelvin Project,” aimed at better understanding & 
measurement of noise in CMOS devices, 0.13 µm 
gate length. [1,2]

• NIST focus is on measurement (& uncertainties), 
particularly for 1 – 12.4 GHz.

• Measurement Challenges:
– Very low minimum noise figure or noise temperature
– Very poorly matched; |S11|, |S22|, and |Γopt| can all be 

greater than 0.7, and are often greater than 0.9. 
– Probe characterization (at least for Tin), on-wafer cal
– Even probe contact to pads (Al) can be problematic if 

vibration present.

NIST MEASUREMENTS [3]
• Our methods based on measurements of output 

noise temperatures.  Nothing fundamentally 
advantageous about noise temperature (available 
power) as opposed to power; it’s just what we’re 
set up to do.

• Work in terms of noise correlation matrix in wave 
representation (flexibility, convenience for some 
purposes).[4,5]
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• Measurement method is fairly standard (vary input 
states, measure output, fit), except:
– have primary cryogenic standard & very well calibrated 

diode sources
– include a reverse noise measurement

– use an on-wafer cal set, multiline TRL at D [6]
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• Follow ISO Guide to Uncertainty in Measurement 
(GUM) [8]

• Type A (statistical): obtained in the fitting process, 
from the covariance Vij

• Fit is done for X’s, so the type-A uncertainties are 
for the X’s.  To get type-A uncertainties for the 
IEEE parameters,

UNCERTAINTY ANALYSIS [5,7]
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• Type-B uncertainties are all other uncertainties, i.e., 
not evaluated by statistical means.

• We “know” uncertainties in underlying quantities 
(TG,i , ΓG,i , Tout,i , S, Tamb , …); want the resulting 
uncertainties in noise parameters.

• Estimate them with a Monte Carlo program 
– use measured values as hypothetical “true” values
– input uncertainties (& distributions) in reflection 

coefficients, noise temperature of non-ambient 
source, ambient temperature, measurement of 
output noise temperature (or power), correlations, 
...
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• MC Program (cont’d)
– generate set of simulated measurement data for 

TG,i , ΓG,i , Tout,i , S, and Tamb , e.g., Tmeas = Ttrue + εT
where < εT > = 0, < εT

2 > = uT
2

– analyze simulated data as if it were real data, 
compute the “measured” noise parameters & G

– repeat (simulate, analyze, repeat)
– compute type-B uncertainties,

• Standard (combined) uncertainty: 22
BAc uuu +=

.)()()()( 2
trueyyyVaryRMSEyu −+=≈

• Values used for underlying uncertainties:
σcor σuncor

ΓG,i ≤ 0.005 : 0.003 0.004
ΓG,i > 0.005 : 0.003 0.004
S21: 0.003 0.004
Tamb : 0.0 0.5 K  (rect. distr.)
Tin,hot : 1 %
Tout,meas : 0.8 % 0.6 %

• Will see resulting uncertainties in noise parameters 
below.
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SOME RESULTS
• Measurements & comparisons done as part of 

“Kelvin Project,” with IBM & RF Micro Devices 
(RFMD) [1,2]

• 128×3×0.12 NMOS device
– 128 fingers of polysilicon over
– 3 µm wide active channel
– 0.12 µm gate length
– fabricated in 0.13 µm technology (by IBM)

• Bias:
– drain voltage  Vds = 1.2 V
– J = 25 µA/µm 

S11 at plane D

S Parameters

Frequency ranges RFMD 0.5 – 6 GHz (to cover cellular bands)
IBM: 2 – 26 GHz
NIST: 1 – 12 GHz

Generally agree well,
but some small differences.
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Noise Parameters (at D):
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Results are probably consistent within expected uncertainties, but it 
is clear that the device performance is better than our ability to 
measure it.
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SIMULATIONS & POSSIBLE 
IMPROVEMENTS

• Can also use the Monte Carlo uncertainty program to 
test possible improvements.

• Caution: results are for NIST methods & system.
• Expect similar results for other systems, but …
• We’re working to extend program to more common 

or more general systems & methods.
• Consider two possible improvements here:

– Inclusion of one or more reverse noise measurements.[2]
– Use of a cold (i.e., significantly below ambient) input 

noise source.

Reverse Noise Measurement(s)

G
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• Inclusion of one or more reverse noise measurements 
improves uncertainties, especially for |Γopt|
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Cold Input Noise Source

• For maximum effect, want 
Tcold as low (and accurate) 
as possible.

• Probe causes problems:  
T1 = αT1′ + (1 − α)Tamb

• If probe has 1 dB loss, (1 − α)Tamb ≈ 62 K at 
Tamb = 296 K.
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Cold Input Noise Source (cont’d)

• With reasonable, “good” values for α, Tcold, uTcold, 
etc., significant improvement if use cold source in 
addition to (not instead of) hot source.
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303-497-3150

NIST publications & presentation slides available at
http://boulder.nist.gov/div818/81801/Noise/index.html
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Extra Slides
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TRL Calibration Set
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CHECKS
• Can directly measure reverse noise T1

• And can compute T1 from noise parameters

• So do both & compare [9]
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• Measure Satt, X, Sdev ; predict X′ & compare.
• Have used this test with an isolator for 

connectorized amplifiers; very successful. [9]
• About to use it on-wafer with an attenuator & 

transistor.

X, Sdev

211´

X´, S´

Att.

Ta , Satt

Dev.11´ Att.

Ta , Satt X, Sdev

21 Dev.

Cascade Test


